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The conditions for optimality of uniform orthonormal subband coders are reviewed. A number of properties of optimal

filter banks are then summarized. The case of nonuniform orthonormal filter banks is also considered, and it is shown
that the well known connection between optimal coding gain, energy compaction, and principal component property

does not extend to the nonuniform case.
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1. INTRODUCTION _
The optimization of orthonormal filter banks!® for fixed input statistics has been of some interest in recent years®~18.
Similar to classical transform coders, the optimality criterion is usually the coding gain (so that the mean square recon-
struction error due to subband quantization is minimized). Some of the advances in recent literature have addressed the
theory of uniform filter banks (i.e., identical decimation ratio in all channels) from the contexts of energy compaction®?,
and principal component analysis'®!4. Numerical optimization of the coding gain has also been addressed™1:1213 A
set of necessary and sufficient conditions for optimality was developed in'®, and it was shown that these conditions
can be satisfied by the design of a sequence of compaction filters. The uniform orthonormal filter bank optimized for
coding gain is also the prinicipal component filter bank, with each filter acting as an energy compaction filter for an
appropriate power spectrum related to the input. In this tutorial we first review these results, and then consider the
case of nonuniform orthonormal filter banks. For this case we will see that there is no simple connection between coding

gain, energy compaction, and the principal component property.

Preliminaries

The subband coder shown in Fig. 1(a) is said to maximally decimated if the decimation ratios ny satisfy >, 1/n; = 1.
It is a uniform subband coder if the ny = M for all k. All discussions except those in Sec. 4 are restricted to this case.
In this case we have the polyphase representation? shown in Fig. 1(b). The filter bank is said to be a biorthogonal or
perfect reconstruction filter bank if R(2)E(z) = L. It is said to be orthonormal or paraunitary if E(e/*) is unitary for
all w. In the orthonormal case the perfect reconstruction condition is F;(e?) = H}(e?“). In terms of the filters we can
express orthonormality as? Hy(e/)H}, (e) ¥ 6(k—m) where the notation F(e?“)|, pr denotes the Fourier transform
of f(Mn). The orthonormality condition implies in particular that each filter H;(e’*) satisfies the Nyquist(M) constraint
|H;(e7)? " = 1. Traditional contiguous-stackings of brickwall filters (Fig. 2) serve as examples of orthonormal filter
banks. In these two examples each filter is an aliasfree(M) filter. An aliasfree(M) or antialias(M) filter is defined to be
one whose output can be decimated without aliasing, that is, the shifted versions H;(e?(“—27¥/M)) do not overlap for

distinct kin 0 < £ €< M —1. Equivalently we say that the filters have aliasfree( M) supports. Such a support could have
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multiple number of passbands (e.g., see Fig. 7 later.)

Statistical Model. The input z(n) is assumed to be zero-mean wide sense stationary (WSS) with power spectral
density (psd) S;z(e’*). The subband signals v;(n) (see Fig. 1(a)) are therefore (zero-mean and) jointly WSS, and the

variances of z;(n) and v;(n) are the same, that is, o2, = o2.. We model the quantizers with additive noise sources

gi(n) (Fig. 1(a)), and assume these noise sources to be jointly WSS with zero mean and variances of the form?1°
02, = 2722 = 2752, where b; is the number of bits assigned to the ith subband quantizer. The constant ¢ (which
depends on the nature of the pdf of the quantizer input!® is assumed to be the same for all subbands. This model does

not require that each g;(n) be white or that any two noise sources be uncorrelated.

Coding Gain. The quantity b = Zﬁal b;/M, which is the average bit rate, is assumed to be fixed. The coding gain
of a subband coder is defined by comparing the average mean square value £spgc of the reconstruction error z(n) — z(n)
with the m.s. value Egirec: Of the direct quantization error (roundoff quantizer) with the same bit rate b. Using the

above noise model, the coding gain Gspc(M) of the uniform orthonormal subband coder of Fig. 1(a) can be derived?:

G M2 Edirect Ef—.(_)l agi/M — &
spo(M)= 2> = == = o \UM M)
(Hi:O "3,») (Hi:O ”3.)

This expression assumes optimal bit allocation as described in>1%. Here we have used the result 35" 02, = Mo?2, valid
for uniform orthonormal filter banks. The preceding coding gain is the ratio of the arithmetic and geometric means,
AM/GM ratio, of the subband variances agi. For fixed input psd S;z(e/*) the variances crg‘_ depend only on the analysis
filters H;(e*). We say that the subband coder is optimal (for the fixed M and S,.(e’)), if these filters are such that
the coding gain is maximized. From (1) we see that coding gain optimization is equivalent to minimizing the product of
subband variances. If the psd S;.(e’*) is monotone decreasing then the contiguous stacking (Fig. 2) yields an optimal

orthonormal filter bank. For arbitrary psd, each filter in the optimal system can have many passbands!®.

2. OPTIMALITY OF UNIFORM ORTHONORMAL FILTER BANKS

We now present the conditions for the optimality of an uniform orthonormal filter bank.

Total Decorrelation Of Decimated Subbands

In orthogonal transform coding theory (where E(z) in Fig. 1(b) is a constant unitary matrix), decorrelation of the
decimated subband random variables v;(n) is necessary and sufficient for optimality. That is, the coding gain is maximum
if and only if E[v;(n)vg(n)] = 0 for i # k, and for all n. For orthonormal subband coders, a stronger condition is necessary:

namely, the decimated subband random processes should be uncorrelated, that is,
Efvi(n)vi(m)] =0 @)

for i # k, and for all n, m. This condition will also be referred to as total decorrelation of subbands. Equivalently, the
power spectrum matrix of the vector process v(n)é [vo(n) vi(n) ... vm—1(n) ]T must be diagonal. That is, letting
S;(e7) be the psd of v;(n), we should have Sy.(e’) = diag[So(e?*) Sy1(e) ...Sm-1(e?*)]. Even this stronger

condition is not sufficient for optimality. For example the traditional brickwall subband coder in Fig. 2 decorrelates the
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subband processes trivially for any input process. The preceding necessary condition follows from the fact that if a pair
of decimated subband processes, say vo(.) and v;(.), are not uncorrelated, then we can insert a delay z~* and a unitary
matrix © to transform the pair vg(n),v1(n — k) into an uncorrelated pair wo(n) and wy(n) (Fig. 3). The modified filter
bank continues to be orthonormal. It can be shown that this modification is such that 02, 02, < 02 o2 which shows
that the coding gain has been increased. Thus, if total decorrelation is not true, the coding gain can be increased. Note
that total decorrelation of the undecimated subbands zg(n) is not necessary.

Using the preceding necessary condition, we can show that the optimal uniform orthonormal subband coder has
Gspo(M) = 1if and only if the (zero-mean WSS) input process z(n) has power spectral density of the form S (e/) =
S(e“M). In this case all the decimated subband signals v;(n) have identical psd S(e?). The condition Syo(e/) =
S(e?“M) is equivalent to the condition that the autocorrelation R, (k) of z(n) is nonzero only when k is a multiple of

M. Thus, there exist nonwhite inputs for which orthonormal SBC might yield no gain, for some fixed M. However,

unless the input is white, this will not happen for all values of M.

Majorization of Decimated Subbands
We say that the set of decimated subband signals v (n) has the majorization property if their power spectra {Si(e?~)}

satisfy
So(e?) > S1(e™) > ... > Sp—1(e?), for all w. (3)

That is, the kth subband psd dominates the (k + 1)th psd for all w. This is demonstrated in Fig. 4.
Theorem 1. Majorization is necessary. For fixed input psd Sz.(e’”) and fixed M, suppose a subband coder is
optimal (in the coding gain sense) among the class of all M-band uniform orthonormal subband coders. Then the

decimated subband signals v, (n) have the majorization property. ')

Proof. Assume majorization is not satisfied, e.g., let So(e?) > S;(e’*) be not valid for all w, even though o2, > o2,.

Cascade a new paraunitary matrix T(e’“) to the right of the given filter bank as shown in Fig. 5, where

Im if So(e’¥) > S1(e?)
T(“)=<¢ (0 1 0 . , (4)
10 0 | if Soe) < Sy(ei)
0 0 Iy_o

The new pair of power spectra S)(e/*), S;(e?~) will then satisfy the property Sj(e’*) > S}(e?*) for all w. Moreover for
each w, S4(e7) > So(e’*) whereas Si(e?) < Si(e?*). Thus the variances of the new signals wo(n) and w;(n) are such
that 02 > 02 and 02, < 02. But 02, + 02, = 02 + 02 (since T(e/*) is paraunitary). Using this we can verify

2 52 < o202 . So the coding gain can been increased whenever majorization is not satisfied. \VAVAV/

Uwo wy vo U1

Necessary and Sufficient Condition For Optimality

Though majorization and decorrelation are necessary for optimality, neither of them is individually sufficient. For
example, the brickwall subband coder with contiguous stacking (e.g., Fig. 2) satisfies the total decorrelation property
for any input psd. On the other hand the orthonormal system with Hy(z) = 2~k satisfies majorization for any iﬁput

though it yields no coding gain. However we havelé:




Theorem 2. A necessary and sufficient condition for optimality. For fixed input psd S;.(e?“), the filter bank
has maximum coding gain (among all M band uniform orthonormal subband coders) if and only if the decimated
subband signals vi(n) simultaneously satisfy total decorrelation and majorization. Furthermore, when these conditions

are satisfied, the set of power spectra {Si(e’)} of the decimated subband signals is unique. X

Proof. From Fig. 1(b) we have S, (e/*) = E(ej“)SB(ej“)ET(ej“) where Sp(e’) and S, (e’“) are power spectra

of the vectors xg(n) and v(n) indicated in the figure. If E(e/*) performs total decorrelation, Sy (e7) is diagonal:
Svv(e?) = B(e/)Sp(e/)ET () = diag {So(e’) S1(e™) ... Sm—1(e™)} (5)

Since E(e?*) is unitary, this implies that for each fixed w, the subband power spectra Si(e’~) are eigenvalues of Sg(e/).
Suppose the majorization property also holds. This means that for each w these eigenvalues are ordered in a decreasing
fashion. Since the set of eigenvalues is unique, each diagonal element in (5) is uniquely determined for each w. Thus
the set of power spectra {Sk(e’*)} which has the majorization property is unique as claimed in the theorem. Since
majorization and total decorrelation are necessary for optimality, and since there is only one set of majorized decorrelated

subband power spectra, it follows that majorization together with decorrelation leads to optimality. \VAvAv/

Since the diagonalizing eigenvector matrix may not be unique, the analysis filters of the optimal system may not

be unique.

3. COMPACTION FILTERS AND CODING GAIN MAXIMIZATION
Fig. 6 shows a filter H(e’) with a zero-mean WSS input z(n) having psd S,.(e?). This can be regarded as an M-fold
decimation filter, that is, one branch of an M-channel analysis bank. Consider the problem of designing H(e’“) such

that the output variance o2 is maximized subject to the constraint that |H(e?)|?> be Nyquist(M), that is,

v
M-1 ‘
|H(e?)[? s 1, ie, Z |H (e/w2mk/M)) 2 = M, for all w (Nyquist constraint). (6)
k=0

The solution H(e’*) is an optimum compaction(M) filter. The ratio 03 /o2 is called the compaction gain. The Nyquist
constraint is imposed because | Hy(e?)|? is Nyquist(M) for every analysis filter H(e’*) in any uniform orthonormal filter
bank. This constraint implies the unit-energy property f02" |H(e’)|?dw/27 = 1 as well as the boundedness property
|[H(e’)|? < M. The role of the energy compaction concept in subband coding theory has been observed by a number
of authors8=14. The following is a refined version for arbitrary M, of Unser’s construction of compaction filters®: (a)
For each frequency wp in 0 5 w < 2w /M define the M alias frequencies wy = wo + 27k/M, where 0 < k < M — 1. (b)
Compare the values of S, (e7) at these M alias frequencies {wx}. Let L be the smallest integer such that Sx,(ej“Lj is
a maximum in this set. Then assign

H(e.v'(wo+(2kn/M))) _ { vM whenk=1L M
0 otherwise.

Repeating this for each wp in the region 0 < w < 27/M, the filter H(e’*) is completely defined for all w in 0 < w < 2.

This filter maximizes the output variance o2 under the Nyquist(M) constraint (6).
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Remarks. If H(e’) is an optimal compaction(M) filter for an input psd S;.(e’) then it will be a valid optimal
solution for the modified psd f[Szz(e’)] where f[.] > 0 is any nondecreasing function. If a psd is non increasing
in [0,27), then the optimum compaction filter is lowpass. While the optimal compaction filter is not unique, the
construction described above has the following special properties: (a) H(e’) is an ideal two-level filter with passband
response = /M and stopband response = 0. (b) H(e’“) is an antialias(M) filter. This follows because if H(e7“) # 0 for
some w, then H(e/(w—27k/M)y = 0 for 1 < k < M — 1. (c) The total width of all passbands is 27 /M.

To describe the construction of optimum (uniform orthonormal) filter banks, consider the example of input psd
shown in Fig. 7(a), and let M = 4. The first step is to choose one filter, Ho(e’*), to be an optimal energy compaction
filter for the input psd Sy, (e?“). This filter is shown in Fig. 7(b). Let the passband support of Hp(e’“) be denoted Sp.

Suppose we define a new psd
; 0 in S
(1) ¢ jwy . 0
Sz (e7) = { Srz(€?%) otherwise (8)

as shown in Fig. 7(c). Thus S,(,-i)(ej“') is obtained by peeling off the portion of S;.(e’*) falling in the passband of
Hy(e?*). We design the next analysis filter H;(e’) to be the optimal compaction filter for this partial psd S’a(clx)(ej“‘).
This is shown in Fig. 7(d). Define the next partial psd Sa(c,?c) (e7) by peeling off the portions of S;(e’*) in the passbands
of Hy(e’) and H;(e’*), and continue in this manner. Thus all the analysis filters can be identified (part (e) in the
figure). The proof that this construction results in an optimal orthonormal system can be found in!?. Most readers will
recognize that the preceding construction yields a principal component filter bank!®. This connection between coding
gain, principal component property, and compaction gain does not carry over to the case of nonuniform filter banks
(Sec. 4).

In general the optimum compaction filters are ideal infinite order filters. In practice, if we approximate these with
FIR filters rather than approximating Fig. 2 as done traditionally, the coding gain can be significantly improved. It can
be shown that the maximum compaction gain is unity for an input psd Sz, (e?~) (for a fixed value of M) if and only if
it has the form Szz(e’“) = S(e/“M). In fact, the following three statements are equivalent!”: (a) S;z(e’“) has the form
Szz(e?) = S(e7“M). (b) Maximum compaction gain Gmaz(M) = 1. (¢) Any M-band orthonormal SBC yields coding

gain = 1.

4. NONUNIFORM FILTER BANKS
The nonuniform filter bank of Fig. 1(a) is orthonormal® if the analysis filters satisfy Hy(e/)H},(e/*) o = 6(k —m)
Gkm
where grm = gcd{ni,nm}. The coding gain of the nonuniform M-band orthonormal filter bank has been derived in?°

and is given by
2
o
Gspo(M) = ————F—7— (9)

1/n;
M-1
Hi=0 (agi)
Consider the special case of a two-level tree structured filter bank (Fig. 8), which is equivalent to a 3-channel nonuniform

FB. The coding gains G; and G of the two-channel filter banks at the levels 1 and 2 are given by G; = 02/ o2 ao2,

and Gy = 031 ,/agoazl. Thus the coding gain of the three channel filter bank is

o2

Gspc(3) = z = G,Gl/?
SBC (032)1/2(031)1/4(030)1/4 1Y
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More generally, consider the M channel dyadic tree structure with M — 1 levels (Fig. 9(a)). Assuming each two channel

filter bank is orthonormal, we have an M-band nonuniform orthonormal filter bank, and the coding gain is!®

Gspc(M) = G,GY*GY* ... (10)

where G, is the coding gain at level m. Thus the extra benefit offered by the mth split decays exponentially with m.
Another consequence of (10) is that, if the tree structure maximizes the coding gain for a given input then the right-
flushed subtrees indicated in Fig. 10 are optimal for their respective inputs. However, since these inputs depend on the

filters preceding them, this observation is not directly useful to identify the optimal filter bank.

Coding Gain and Compaction Gain
Consider the input power spectrum shown in Fig. 11(a). Assuming that the process is Gaussian, the rate-distortion
theoretic upper bound on the coding gain, given by!® Gy, = 2/ exp f(;‘)' "Ln S;z(e/)dw/27, has the value

_2+4c+d
“PT 4(ed)l/4

Suppose we use the two-level orthonormal tree structured filter bank shown in Fig. 8, with filter responses as in Fig.

G (11)

11(b) and 11(c). The coding gains of the individual levels are

g =2tetd o _ctd
4,/etd 2v/cd

The total coding gain of the tree, given by G 1G;/ 2, is therefore equal to (11) showing that the tree achieves the upper
bound on the coding gain. This means in particular that the choice of filters shown in Fig. 11 results in an optimal
orthonormal two-level dyadic tree. Next, Fig. 11(d) shows the effective filter Hyo(z)H20(22) of the top channel (which
has effective decimator | 4) of the three channel filter bank. Since ¢ < 1, this is clearly not an optimum compactio‘n(tl)
filter for the input psd. This example shows that, even though the coding gain is optimized, the top filter H1o(2)H20(22%)

is not an optimum compaction filter for the input z(n).

Nonoptimality of Individual Sections

We pointed out that if a tree structured filter bank is optimal, then the right-flushed subtrees (Fig. 10) are optimal for
their inputs. However, the left-flushed subtrees are not necessarily optimal. For example, the gain G; of level 1 may
not be optimal for the primary input z(n). In fact, if we optimize each stage for its input by proceeding from left to
right, it may not yield an optimum tree. This is demonstrated with the example shown in Fig. 12, for a two-level dyadic
tree. The choice of filters shown earlier in Fig. 11 yields the coding gain (11), and therefore represents an optimal
orthonormal filter bank. Instead of using this filter bank, suppose we first optimize the coding gain G of level 1. The
unique ideal level-1 filter bank for this is shown in Fig. 12(b), and has coding gain G; = (2 + ¢+ d)/2/(1 + ¢)(1 + d).
The decimated subband psd at level 1 are shown in Fig. 12(c), and 12(b). The optimum leve] 2 filter bank yields the
coding gain Gy = (1 + d)/2V/d (assuming this is greater than (1 + ¢)/2,/c) so that the overal gain is

12 _2+c+d 2\/c\1/2
Ci16Y" = Jram * <1+c)
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which is the optimal gain (11) reduced by the factor a. Since a < 1 unless ¢ = 1, this filter bank is not optimal.

Principal Component Property And Compaction
As shown earlier, unlike in uniform filter banks, the coding gain and compaction gain are not directly related in the case
of nonuniform orthonormal filter banks. However, there is a simple direct relation between optimal compaction and the
principal component property even in the nonuniform case. |

In our discussion we find it convenient to change the normalization convention for the filters. Thus consider the
example of a 3-level tree of the form Fig. 9. Assuming that the filter bank is orthonormal we have 62, +02, +202, +402 =

802. We would like to rescale the analysis filters such that under the new scaling convention 02, + 02, +02, +02, = 03,

or more generally, Zf’:?,l 02, = o2. This is accomplished simply by dividing each two-channel analysis filter Him (2) by
v/2 and multiplying the corresponding synthesis filter by V2. Under the new scaling convention, the signals y; indicated

in Fig. 9 have variances given by

2 _ 2 2
0y1_010+011

2 _ 2 2 2

%y _al‘o+a$1+g-’t2

2 __ 2 2 2 2
0y3_0-10+ax1+0-=32+023

If the tree structured filter bank has the principal component property for the given input z(n), then the partial sum

L
2 _ 2
ayL - Zazk
k=0
is maximized for each value of L in 0 < L < M — 1. That is, the left-flushed subtrees indicated in Fig. 13 should be
such that their top filters

i

Hio(z)Hao(2?) ... Hip10(2%)

are optimal compaction(2i*!) filters for the primary input x(n). For example, Hio(z) should be the optimum com-
paction(2) filter for z(n), whereas Hio(z)Ha2o(2%) must be the optimum compaction(4) filter for the same xz(n) and so

forth.

To explain how the above principal component property can be satisfied, consider the example of a three-level
tree of the form shown in Fig. 9. First design an optimum compaction(8) filter for the input z(n). As shown in'8,
this filter can always be implemented in the multirate-cascade form shown in Fig. 14 where each Ho(2) is an optimal
compaction(2) filter for its input. Since each Hyo(z) is such that |H, w0 (e7)]? is Nyquist(2), we can always define a filter
Hy1(2) such that the pair {Hyo(z), Hx1(2)} is a two-channel orthonormal filter bank. Since each Hio(z) is an optimum
compaction filter for its input, the pair {Hxo(2), Hr1(2)} maximizes the coding gain for its input. In this way, the
complete tree structure is defined (by Fig. 9) and satisfies the principal component property. The coding gain of this

prinicipal component filter bank, however, is not necessarily maximized as explained earlier.

5. CONCLUDING REMARKS
We now summarize a number of related results derived in!?. The compaction gain afj /o? in Fig. 6 depends on the

input psd as well as the filter H(e’). The maximum compaction gain Gumaz(M) is such that 1 < Gmaz(M) < M. We
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have Gumaz(M) = 1 if and only if Sy (/) = S(e?“M), and Gumaz(M) = M if and only if S;z(e?*) has an aliasfree(M)
support. For arbitrary Sg.(e’*), the gain Gz (M) is not monotone increasing in M, though this can be shown to be
true for monotone S,,(e’“). Finally, the optimized coding gain Ggpc(M) of the M band uniform orthonormal subband
coder is not necessarily a monotone increasing function of M even if S;;(e’*) is monotone. This is unlike the behavior
of the optimal transform coder (KLT).

For fixed number of subbands M, biorthogonal filter banks can in general provide better coding gain than orthonor-
mal filter banks. In fact, the coding gain of an optimal orthonormal filter bank can almost always be improved by
using a half-whitening prefilter H(e’*) and a post filter 1/H(e’*) around that filter bank. The optimal combination of
the prefilter H(e’) and the orthonormal filter bank, which maximizes coding gain, is given in'®. A related question
of interest is, what is the class of input psd S;(e’*) for which an optimal orthonormal filter bank is as good as a
biorthogonal one (in the coding gain sense)? For uniform filter banks with fixed M it is shown in!? that this is the case
if and only if the frequency axis [0,27) can be partitioned into M aliasfree(M) regions such that S;.(e’*) is a constant

in each region.
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Fig. 11. An input psd and the various filters in a two level

tree structured optimal orthonormal filter bank
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Fig. 12 (a) An input psd, (b) the optimal level 1 filter, and
(c), (d) the decimated subband power spectra at level 1.
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Fig. 14. The cascade implementation of an optimal
compaction(8) filter. This completely defines
the 3-level dyadic principal component filter bank.

Fig. 13. The left-flushed subtrees of a principal
component FB define several optimal compaction

filters for the primary input x(n).




